

BO3MODKHOCTM ADMINISHOCO TPOM3BODCTBA

СИСТЕМА CREO УСТРАНЯЕТ РАЗРЫВ МЕЖДУ МОДЕЛЬЮ 3D CAD И АДДИТИВНЫМ ПРОИЗВОДСТВОМ С ПОМОЩЬЮ СПЕО ВЫ ДЕЙСТВИТЕЛЬНО ПЕЧАТАЕТЕ ТО, ЧТО КОНСТРУИРУЕТЕ

Благодаря Сгео вы можете конструировать, оптимизировать, проверять и проводить тестирование печати все в единой среде, что сокращает затраты времени, объем утомительной работы и количество ошибок. Когда будете готовы, просто отправьте файл прямо на 3D-принтер.* Вы можете создавать проекты по аддитивному производству с использованием полимеров и металла, а затем напрямую подключаться к выбранному принтеру, используя оптимизированный профиль для этого принтера и поддерживаемые структуры. Не нужно переключаться между программными пакетами и совершать лишние действия. Наши возможности печати с использованием металлов позволяют использовать 70 % принтеров по металлу, доступных на рынке.

>>> ПРЕИМУЩЕСТВА CREO

Сreo — это решение 3D CAD, которое ускоряет создание инноваций и разработку современных изделий. Пакет Creo не требует больших усилий для освоения и применяется как на начальном этапе проектирования, так и при производстве и осуществлении дальнейшей поддержки. Проверенные эффективные функции можно сочетать с новыми технологиями, такими как генеративный дизайн, дополненная реальность, моделирование в реальном времени, аддитивное производство и Интернет вещей, для ускорения итераций, сокращения расходов и повышения качества изделий. Мир конструкторской разработки быстро меняется, и только Creo предлагает новаторские инструменты, которые обеспечивают конкурентное преимущество и увеличение доли рынка.

Версии Сгео	4	5	6	7	8
Модуль Creo Parametric					
Формирование лотков печати.	•				•
Проверка возможности печати.	•				•
Подключение к принтерам для печати пластиком 3D System (понимание использования материала и времени печати).	•				•
Подключение к службе печати i.materialize.	•				•
Подключение к принтерам для печати пластиком в библиотеке Materialise Library (управление драйверами печати и профилями).		•	•	•	•
Подключение к службе печати 3D Systems ODM.					
Модуль Creo Additive Manufacturing Extension					
Моделирование решеток (2 ½ D- и 3D-каркасные решетки, равномерное распределение).					
Решетки на основе формул (ячейки трижды периодической минимальной поверхности: гироиды, примитивного типа и типа «ромб»).			•		•
Усовершенствованные каркасные решетки (стохастические — конформные и пенные, переходы).					
Стохастические решетки с алгоритмом Delaunay и распознаванием кромок					
Стохастические решетки, вариант трабекулярной формы для триангуляции Вороного.					•
Гомогенизированное представление решетки для быстрого моделирования и хранения компактных файлов.					
Определенные пользователем ячейки (на основе файлов Creo .prt).					
Улучшения определенных пользователем ячеек, поддержка составных поверхностей и кривых.					
Выборочное удаление свисающих балок.					
Изменяемость решеток на основе геометрических привязок.	•	•	•		•
Моделирование и оптимизация решеток с помощью идеализации в Creo Simulate.		•	•	•	•
Моделирование решеток в режиме реального времени с помощью Creo Simulation Live.			•	•	•
Автоматическая изменяемость решеток на основе результатов моделирования (только для решеток на основе балок).					•
Изменение, сохранение сборок лотка печати и управление ими.	•	•	•	•	•
Автоматическая проверка позиционирования, укладки и глобального пересечения на сборках лотка печати.	•	•	•	•	•
Добавление нескольких деталей на лотковую сборку в один этап.					•
Определение направления компоновки печати в режиме детали и прямое размещение в лотке печати.			•	•	•
Экспорт базовой спецификации в формат ЗМF.		•	•	•	•
Поддержка расширения цветов и материалов 3MF, а также расширения решетки лучей 3MF.			•	•	•
Поддержка драйверов в Windows 10 для 3D-печати.			•	•	•
Модуль Creo Additive Manufacturing Plus Extension for Materialise					
Поддержка принтеров для печати металлом в библиотеке Materialise Library (управление драйверами печати и профилями).		•	•	•	•
Генерирование и настройка поддерживающих структур для печати на металлических принтерах.		•	•	•	•
Дополнительные опорные структуры: древовидная, конус и гибридная.				• 7.0.1.0	•
Оптимизация направления компоновки печати в режиме детали и прямое размещение в лотке печати.			•		
Многоцелевая оптимизация направления компоновки печати и обнаружение вершин и кромок вылета.					
Моделирование аддитивного процесса Amphyon для Creo.*					
Моделирование деталей, решеток и опор на лотковой сборке. Для 3D-принтеров для печати металлом с применением порошкообразного материала.				•	•
Создание компенсированных моделей и их вставка на дерево модели лотковой сборки.				•	•
Версии Стео	4	5	6	7 _	8
Модуль Creo Generative Topology Optimization (GTO)					
Задавайте ограничения и требования, в том числе материалы и производственные процессы •				•	•
Работайте с процессами аддитивного производства и более традиционными процессами •				•	•
Результат — впечатляющая геометрия граничного представления •				•	•
Модуль Creo Generative Design Extension (GDX)					

Последние сведения о поддерживаемых платформах и требованиях к системе см. на странице технической поддержки РТС.

© PTC Inc. (PTC), 2021 г. Все права защищены. Приведенные в настоящем документе сведения предоставляются исключительно в информационных целях, могут быть изменены без предварительного уведомления и не подразумевают никаких гарантий, обязательств или предложений со стороны компании PTC. PTC, логотип PTC, а также все наименования и логотипы продуктов PTC являются зарегистрированными товарными знаками компании PTC и (или) ее дочерних компаний в США и других странах. Все другие наименования продуктов или компаний являются собственностью соответствующих владельцев. Сроки выпуска любой версии продукта, включая любые модули и функциональные средства, могут быть изменены по усмотрению компании PTC.

58561_Additive_Manufacturing_Brochure_0221-ru

С помощью облачного модуля GDX можно анализировать несколько вариантов одновременно

МОДУЛЬ CREO PARAMETRIC >>>

Подключение к принтерам 3D Systems Plastic, а также к службам печати i.materialise и 3D Systems.

- Стандартные (готовые к применению) функциональные возможности: печать деталей, назначение материалов, цветов и расчет построения и соответствующих материалов непосредственно в Creo.
- Возможность прямого заказа деталей в i.materialise и 3D Systems в салонах производственной печати по требованию.

Подключение к принтерам для печати пластиком в библиотеке Materialise.

- Стандартные (готовые к применению) функциональные возможности: печать пластмассовых деталей непосредственно из Creo.
- Управление драйверами и профилями печати для принтеров, работающих с пластиком, с использованием библиотеки.
- Для печати опорных структур требуется модуль *Creo Additive Manufacturing Plus Extension for Materialise*.
- Materialise предоставляет оптимизированные профили принтеров для каждого принтера в библиотеке Materialise. Materialise предоставляет процессоры сборки.

Партнеры по аддитивному производству РТС

ВОЗМОЖНОСТИ АДДИТИВНОГО ПРОИЗВОДСТВА CREO:

0

МОДУЛЬ CREO ADDITIVE MANUFACTURING EXTENSION >>>

Моделирование решеток.

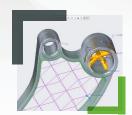
- Оптимизация конструкции решеток на базе симуляции.
- Создавайте параметрически управляемые решетчатые структуры, полностью детализированные компоненты с точными массовыми свойствами. Благодаря контролю вариативности вы можете оптимизировать решетки и достичь необходимого инженерного результата.
- Используйте весь спектр ячеистых структур, например: 2 ½ D, 3D на основе лучей, на основе формулы, стохастические и пользовательские.
- Воспользуйтесь преимуществом переходов решеток между решетками на основе лучей и поддерживаемыми лоскутами модели на основе ориентации построения и критического угла.
- Улучшенная стимуляция FEA очень плотных полных решеток BREP на основе лучей с использованием гомогенизированного представления вместе с Creo Simulate для анализа линейной, статической и модальной реакции детали.

Создание, изменение, сохранение сборок лотка печати и управление ими.

- Определите лоток печати для используемого принтера, где лотковая сборка будет репозиторием для задания 3D-печати.
- Добавляйте детали в любое время, определяйте позицию и вращения, назначайте материалы/цвета и т. д.

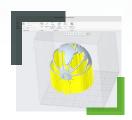
Автоматическое позиционирование и укладка компонентов в сборках лотка печати.

- Оптимизируйте ориентацию деталей в лотке печати в соответствии с инструкциями принтера.
- Вкладывайте детали в сборки лотка печати (если принтер поддерживает вложение деталей).


Направление построения

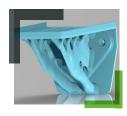
• Определение оптимальной ориентации для печати вашей конструкции.

ВОЗМОЖНОСТИ АДДИТИВНОГО ПРОИЗВОДСТВА CREO:



МОДУЛЬ CREO ADDITIVE MANUFACTURING PLUS EXTENSION FOR MATERIALISE >>>

Подключение к принтерам для печати металлом в библиотеке Materialise.


- Стандартные (готовые к применению) функциональные возможности: печать деталей, назначение материалов, цветов и расчет построения и соответствующих материалов непосредственно в Creo.
- Оптимизированные профили принтеров для каждого принтера в библиотеке Materialise. Materialise предоставляет процессор сборки.

Генерирование и настройка поддерживающих структур для печати на металлических принтерах.

- Опорные структуры на основе материалов (точка, линия, клин, сетка, контур и блок) древовидного, конусообразного и гибридного типов создаются в лотковой сборке после размещения детали в лотке и выбора принтера.
- Опоры создаются в Стео и обновляются при изменении модели.
- Параметры поддержки зависят от конкретного принтера и могут быть изменены пользователем.
- При необходимости пользователи могут изменять конкретные опорные структуры

МОДУЛЬ CREO GENERATIVE TOPOLOGY EXTENSION >>>

Оптимизируйте конструкции в соответствии с вашими требованиями

- Единая настройка для анализируемого варианта. Достаточно выбрать конструкторское пространство, добавить нагрузки и ограничения, а затем определить цели, материалы и производственный процесс. Результатом может быть окончательная конструкция или промежуточный вариант для дальнейших итераций.
- Поддержка множества стандартных технологических требований: от традиционного до аддитивного производства.
- Предварительный просмотр и исследование оптимизированной конструкции, а также демонстрация результатов симуляции. Интерактивный процесс с динамическим обновлением конструкции по мере изменения геометрии и конфигурации.
- Автоматическое преобразование оптимизированных конструкций в контурное представление или мозаичную модель.
- Только структурный анализ. Модальный и тепловой анализ доступны в Creo 9.0.

МОДУЛЬ CREO GENERATIVE DESIGN >>>

Параллельный анализ нескольких вариантов

- Используйте преимущества облака
- Автоматический выбор оптимальных вариантов, в частности тех, которые вы могли упустить из виду.
- Благодаря GDX, младшие инженеры-конструкторы могут эффективно участвовать в процессе конструирования уже на ранних этапах, создавая конструкции на базе требований к изделию.